Skip to main content

Advertisement

Log in

Fabrication of Drug-Loaded Calcium Phosphate Nanoparticles: An Investigation of Microbial Toxicity

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Calcium phosphate (CaP) nanomaterials are considered as potential biomaterial for drug delivery systems because of their excellent biocompatible features. In the present study, amino glycoside antibiotics, such as kanamycin and gentamycin-loaded CaP nanoparticles, were successfully synthesized by the precipitation method. Physicochemical properties were analyzed by XRD, FTIR, FE-SEM, EDX, and light-scattering (DLS) measurements. The average size of CaP nanoparticles ranges from 20 to 100 nm, as measured by DLS analysis. The crystallinity of the prepared nanoparticles was confirmed by XRD analysis, which revealed that the CaP nanoparticles were in crystalline and hydroxyapatite (HA) phase with tricalcium phosphate (TCP). The FTIR spectrum confirmed the presence of phosphate and surface hydroxyl groups. In vitro release study of drug-loaded CaP (D-CaP) nanoparticles was performed, and the drug release from nanoparticles was sustained over 5 days, with an entrapment efficiency of 52.05 ± 3% and 65.3 ± 4%, respectively. The antibacterial activity of D-CaP nanoparticles was evaluated against Bacillus cereus (KACC 14394), Staphylococcus aureus (KCTC 1916) Escherichia coli (KACC 10005), and Salmonella typhi (KCCM 40253) by the well diffusion and minimum inhibitory concentration (MIC) methods. We found the bactericidal effect of D-CaP nanoparticles in a dose-dependent manner by MTT assay. In addition, the interaction of D-CaP nanoparticles against bacterial pathogens was demonstrated by Bio-TEM analysis, providing clear evidence of the disruption of bacterial cell membranes. The results of the present study suggest that D-CaP nanoparticles can be useful for the treatment of bacterial infection in the bone as well as in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Weiner and L. Addadi (1997). J. Mater. Chem. 7, 89–702.

    Article  Google Scholar 

  2. M. Vallet-Regi and J. M. Gonzalez-Calbet (2004). Prog. Solid State Chem. 32, 1–31.

    Article  CAS  Google Scholar 

  3. L. L. Hench and J. M. Polak (2002). Third-generation biomedical materials. Science 295, 1014–1017.

    Article  CAS  PubMed  Google Scholar 

  4. A. Veis (2005). A window on biomineralization. Science 307, 1419–1420.

    Article  CAS  PubMed  Google Scholar 

  5. K. Kurashina (1997). Biomaterials 18, 539–543.

    Article  CAS  PubMed  Google Scholar 

  6. D. Apelt, F. Theiss, A. O. El-Warrak, K. Zlinszky, R. Bettschart-Wolfisberger, M. Bohner, S. Matter, J. A. Auer, and B. Von Rechenberg (2004). Biomaterials 25, 1439–1451.

    Article  CAS  PubMed  Google Scholar 

  7. J. A. Jansen, J. E. de Ruijter, H. G. Schaeken, J. P. C. Van der Waerden, J. A. Planell, and F. C. M. Driessens (1995). J. Mater. Sci. Mater. Med. 6, 653–657.

    Article  CAS  Google Scholar 

  8. C. D. Friedman, P. D. Costantino, S. Takagi, and L. C. Chow (1998). J. Biomed. Mater. Res. Appl. Biomater. 43, 428–432.

    Article  CAS  Google Scholar 

  9. S. Larsson and T. W. Bauer (2002). Clin. Orthop. Relat. Res. 395, 23–32.

    Article  Google Scholar 

  10. E. M. Ooms, J. G. C. Wolke, M. T. Van de Heuvel, B. Jeschke, and J. A. Jansen (2003). Biomaterials 24 (6), 989–1000.

    Article  CAS  PubMed  Google Scholar 

  11. P. Torner (2001). Bone tissue repair by osteotransduction with a calcium phosphate cement. An experimental study. PhD Thesis from the Dept of Surgery, Faculty of Medicine. Universitat de Barcelona 2001: Spain.

  12. E. Fernández, M. G. Boltong, M. P. Ginebra, F. C. M. Driessens, O. Bermúdez, and J. A. Planell (1996). J. Mater. Sci. Lett. 15, 1004–1005.

    Article  Google Scholar 

  13. A. E. Ewence, M. Bootman, H. L. Roderick, J. N. Skepper, G. McCarthy, M. Epple, M. Neumann, C. M. Shanahan, and D. Proudfoot (2008). Circ. Res. 103, e28.

    Article  CAS  PubMed  Google Scholar 

  14. A. Doat, F. Pelle, N. Gardant, and A. J. Lebugle (2004). Solid State Chem. 177, 1179–1187.

    Article  CAS  Google Scholar 

  15. S. Padilla Mondejar, A. Kovtun, and M. Epple (2007). J. Mater. Chem. 17, 4153–4159.

    Article  CAS  Google Scholar 

  16. M. Kester, Y. Heakal, T. Fox, A. Sharma, G. P. Robertson, T. T. Morgan, E. I. Altinoglu, A. Tabakovic, M. R. Parette, S. M. Rouse, V. RuizVelasco, and J. H. Adair (2008). Nano Lett. 8, 4116–4121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X. Cheng and L. Kuhn (2007). Int. J. Nanomed. 2, 667–674.

    CAS  Google Scholar 

  18. R. Ramachandran, W. Paul, and C. P. Sharma (2009). J. Biomed. Mater. Res. Part B 88, 41–48.

    Article  CAS  Google Scholar 

  19. A. Salama and M. El-Sakhawy (2014). Carbohydr. Polym. 113, 500–506.

    Article  CAS  PubMed  Google Scholar 

  20. Z. F. Zhou, T. W. Sun, F. Chen, D. Q. Zuo, H. S. Wang, Y. Q. Hua, Z. D. Cai, and J. Tan (2017). Biomaterials 121, 1–14.

    Article  CAS  PubMed  Google Scholar 

  21. S. Wang, X. Wang, H. Xu, H. Abe, Z. Tan, Y. Zhao, J. Guo, M. Naito, H. Ichikawa, and Y. Fukumori (2010). Adv. Powder Technol. 21, 268–272.

    Article  CAS  Google Scholar 

  22. T. Cao, W. Tang, J. Zhao, L. Qin, and C. Lan (2014). J. Bionic Eng. 11, 125–133.

    Article  Google Scholar 

  23. D. Guo, D. Dou, L. Ge, Z. Huang, L. Wang, and N. Gu (2015). A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloid Surf. B: Biointerfaces 134, 229–234.

    Article  CAS  PubMed  Google Scholar 

  24. S. Erdogan, K. Turkekul, R. Serttas, and Z. Erdogan (2017). Biomed. Pharmacother. 88, 210–217.

    Article  CAS  PubMed  Google Scholar 

  25. V. Vergaro, P. Papadia, P. Petrini, F. P. Fanizzi, S. A. De Pascali, F. Baldassarre, L. Pastorino, and G. Ciccarella (2017). Int. J. Biol. Macromol. 99, 187–95.44.

    Article  CAS  PubMed  Google Scholar 

  26. T. Liu, A. Tang, G. Y. Zhang, Y. X. Chen, J. Y. Zhang, S. S. Peng, and Z. M. Cai (2005). Cancer Biother. Radiopharm. 20, 141–149.

    CAS  PubMed  Google Scholar 

  27. A. Qadir, Y. Gao, P. Suryaji, Y. Tian, X. Lin, K. Dang, S. Jiang, Y. Li, Z. Miao, and A. Qian (2019). Non-viral delivery system and targeted bone disease therapy. Int. J. Mol. Sci. 20, 565.

    Article  CAS  PubMed Central  Google Scholar 

  28. D. N. Gilbert, G. L. Mandell, J. E. Bennett, and R. Dolin (1995). Principles and Practice of Infectious Diseases, 4th ed. New York: Churchill Livingstone.

  29. K. Lin, J. Chang, R. Cheng, and M. Ruan (2007). Mater. Lett. 61, 1683–1687.

    Article  CAS  Google Scholar 

  30. F. Barrère, C. A. Van Blitterswijk, and K. de Groot (2006). Int. J. Nanomed. 1 (3), 317–332.

    Google Scholar 

  31. B. D. Cullity, in M. Cohen (ed.) (1977). Elements of X-ray Diffraction, 2nd ed. Addison-Wesley Publishing company.

  32. V. Wu, S. Tang, and V. Uskokovic (2018). ACS Appl. Mater. Interfaces 10 (40), 34013–34028.

    Article  CAS  PubMed  Google Scholar 

  33. N. Yael Slavin, J. Asnis, O. Urs Häfeli, and H. Bach (2017). J. Nanobiotechnol. 15, 65.

    Article  CAS  Google Scholar 

  34. G. Tortora, R. B. Funke, and L. C. Case (2001). Microbiology: An Introduction. New York: Addison-Weslay Longman Inc.

    Google Scholar 

  35. S. Pal, Y. K. Tak, and J. M. Song (2007). Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. C. Kassab, K. Xu, E. B. Denkbas, Y. Dou, S. Zhao, and E. Piskin (1997). Rifampicin carrying polyhydroxybutyrate microspheres as potential chemoembolization agent. J. Biomater. Sci. 8, 947–961.

    Article  CAS  Google Scholar 

  37. M. E. Samberg, P. E. Orndorff, and N. A. Monteiro-Riviere (2011). Nanotoxicology. 5, 244–253.

    Article  CAS  PubMed  Google Scholar 

  38. X. H. N. Xu, W. J. Brownlow, S. V. Kyriacou, Q. Wan, and J. J. Viola (2004). Biochemistry. 43, 10400–10413.

    Article  CAS  PubMed  Google Scholar 

  39. D. M. Eby, H. R. Luckari, and G. R. Johnson (2009). ACS Appl. Mater. Interfaces 1, 553–1560.

    Article  CAS  Google Scholar 

  40. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman (2005). Nanotechnology 16, 2346–2353.

    Article  CAS  PubMed  Google Scholar 

  41. C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che (2006). J. Proteome Res. 5, 916–924.

    Article  CAS  PubMed  Google Scholar 

  42. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96.

    Article  CAS  PubMed  Google Scholar 

  43. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji (2008). Acta Biomater. 4, 707–716.

    Article  CAS  PubMed  Google Scholar 

  44. A. Nel, T. Xia, L. M. Adler, and N. Li (2006). Science 311, 622–627.

    Article  CAS  PubMed  Google Scholar 

  45. X. Cai, B. Han, Y. Liu, F. Tian, F. Liang, and X. Wang (2017). ACS Appl. Mater. Interfaces 9, 12949–12958.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Ding, K. Zhai, P. Pei, Y. Lin, H. Zhu, M. Shao, X. Yang, and W. Tao (2017). J. Colloid Interface Sci. 493, 181–189.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology, India, under the scheme of DST-WOS-A, SR/WOS-A/LS-244/2016 New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadhasivam Sathya or Yong Taik Lim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, S., Lim, Y.T., Parthasarathi, S. et al. Fabrication of Drug-Loaded Calcium Phosphate Nanoparticles: An Investigation of Microbial Toxicity. J Clust Sci 33, 2009–2018 (2022). https://doi.org/10.1007/s10876-021-02104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02104-6

Keywords

Navigation